If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+20q=8400
We move all terms to the left:
q^2+20q-(8400)=0
a = 1; b = 20; c = -8400;
Δ = b2-4ac
Δ = 202-4·1·(-8400)
Δ = 34000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34000}=\sqrt{400*85}=\sqrt{400}*\sqrt{85}=20\sqrt{85}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{85}}{2*1}=\frac{-20-20\sqrt{85}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{85}}{2*1}=\frac{-20+20\sqrt{85}}{2} $
| 3x+3x^2=180 | | y=1/4×-4-3 | | 1.7q-5.2-1.4q=-0.7q-4.6 | | 3x+3^2=180 | | 6=z+10/4 | | -28=5w-3w | | 6−x−3=10 | | 3t-5t=11 | | 4x+5-12=3x-2 | | 15x-164=180 | | 8a-10=10 | | -u+102=258 | | 2−5(x+5)=3(x−2)−1 | | -w+212=91 | | (1)/(2)(4z+(1)/(4))=2(z+(1)/(16)) | | 3x²-40x+75=0 | | 9x+4=7x+15 | | -42=-x/9 | | 7p+11=-16-2p | | 2(-3x+1)+3(-2x+1)=13-4(3x+2) | | 3(x-6)+8=13 | | 2x-3=(1/2)x+17 | | 16v=17v+12 | | -3(w-1)=3w+33 | | -5k-29=5-13k | | -r-10=6r+6-5r | | 50+100nn=2 | | 40x+20=620 | | -3-p=-2p+5 | | -7x-46=-5(x+8) | | 5y+12=-6-y | | -15+17k=13k+17 |